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Abstract

Deepfake detection focuses on identifying forged
content in visual data. With the rapid advances in
generative models, it has become increasingly crit-
ical to mitigate risks such as identity fraud, mis-
information, and other security threats. Most ex-
isting Deepfake detection methods primarily focus
on image-level classification. Despite their notable
progress, they generally lack the capability to pre-
cisely localize the forgery regions, which limits
their applicability and interpretability in real-world
settings, especially in scenarios involving multiple
faces or facial component manipulations. To this
end, we propose a unified end-to-end framework
that jointly performs image-level forgery classifi-
cation and fine-grained localization of forgery re-
gions. Considering that forgery regions are of-
ten small and sparsely distributed, we utilize a set
of learnable queries and masked attention mech-
anisms to suppress background noise and guide
the localization prediction to focus on relevant re-
gions. Extensive experiments on the DDL-I chal-
lenge benchmark validate the effectiveness of our
framework for both Deepfake detection and local-
ization tasks. By using the ensemble strategy, our
final solution achieves an overall score of 81.50%
on the DDL-I testing set, demonstrating strong per-
formance in handling practical Deepfake detection
challenges.

1 Introduction

Deepfake detection [Juefei-Xu er al., 2022] aims to iden-
tify manipulated content in visual data. With the rapid ad-
vances in deep generative models, producing highly realistic
synthetic facial images has become increasingly accessible.
However, the misuse of Al-generated content presents seri-
ous risks, including identity fraud, misinformation, and on-
line scams [Lin et al., 2024]. Therefore, developing effective
and interpretable Deepfake detection methods is essential to
uphold digital authenticity and social trust.
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Most existing Deepfake detection methods, e.g., [Rossler
et al., 2019], focus on image-level classification, aiming to
determine whether an entire image is real or fake. These ap-
proaches leverage various artifact cues, such as spatial incon-
sistency [Chai er al., 2020] and frequency information [Li et
al., 2021; Miao et al., 2023b]. Despite notable progress, they
often struggle to provide fine-grained localization of manip-
ulated regions, which limits their effectiveness in real-world
applications. Although some tailored Deepfake localization
approaches, such as [Kong et al., 2022; Shuai et al., 2023;
She er al., 2024], have also been explored, they still fall short
in real-world scenarios, particularly when dealing with high-
resolution images that contain both genuine and forged faces
or involve only subtle manipulations of specific facial com-
ponents.

To address these challenges, we propose an end-to-end
framework that simultaneously performs image-level forgery
classification and precise localization of manipulated regions.
Our model takes the entire image as input, supporting multi-
face scenarios without pre-processing steps such as face crop-
ping, thereby greatly simplifying the inference pipeline. Our
method employs a shared backbone to extract features for
both detection and localization tasks. Inspired by a mod-
ern Transformer-based segmentation model, Mask2Former
[Cheng et al., 2022], we utilize a set of learnable queries and
masked attention mechanisms to suppress background noise
and make the localization focus on small and sparse forgery
regions. Mask2Former was originally designed for semantic
segmentation, where object regions are large and have clear
boundaries, while Deepfake localization requires detecting
small, sparsely distributed forgery regions. Therefore, our
framework leverages learnable queries and masked attention
mechanism to progressively refine localization regions that
contain subtle manipulation artifacts.

Extensive experiments on the Deepfake Detection and
Localization image (DDL-I) [Miao er al., 2025] challenge
benchmark show that the proposed method can effectively
perform Deepfake detection and localization jointly, achiev-
ing an AUC of 94.95% for detection and an IoU of 71.79%
for localization on the DDL-I testing set. With the ensem-
ble strategy, our final solution got an overall score of §1.50%
on the DDL-I testing set, achieving a leading position in the
IJCAI 2025 Challenge “The Deepfake Detection and Local-
ization”. These results highlight its strong capability in de-



tecting various types of forgeries and its potential for complex
and challenging real-world application scenarios.

2 Related Work
2.1 Deepfake Detection

Deepfake detection focuses on distinguishing between au-
thentic and forged facial images. Early studies [Rossler
et al., 2019] utilized conventional networks to perform bi-
nary image classification. Subsequent methods also ex-
plored more specific spatial artifacts, including eye blink-
ing [Haliassos et al., 2021], local patch inconsistency [Chai
et al., 2020], and frequency domain clues [Li et al., 2021;
Miao et al., 2023b]. With the rise of deep generative mod-
els, recent studies have focused on improving the generaliza-
tion of Deepfake detectors to unseen forgery types. Shiohara
et al. [Shiohara and Yamasaki, 2022] proposed a data syn-
thesis method that makes models to learn generalizable rep-
resentations from diverse pseudo-samples. CDDB [Li et al.,
2023] adopted a continual learning paradigm to accommodate
new forgery types without catastrophic forgetting. Recent ap-
proaches [Ojha et al., 2023; Tan et al., 2023; Liu et al., 2024,
Nguyen et al., 2024] also utilized intermediate features or
gradient information as universal representations to improve
cross-domain generalization. However, these methods focus
solely on image-level classification and lack the ability to lo-
calize forged regions, limiting their interpretability and real-
world applicability.

2.2 Deepfake Localization

Deepfake localization aims to precisely locate forgery regions
and predict pixel-level masks. While typical image manipula-
tion localization methods [Liu et al., 2022; Zhou et al., 2023]
performed well in natural scene images, they are less effective
for Deepfake localization due to high-level semantic changes
to facial features or identities in Deepfakes. Recent studies
have proposed various strategies tailored for Deepfake local-
ization. Kong et al. [Kong et al., 2022] fused semantic and
noise maps to extract high-level clues indicative of forgery.
In contrast, Shuai et al. [Shuai et al., 2023] introduced a two-
stream architecture that integrates spatial information with
noise residual cues. Other approaches leveraged attention-
based mechanisms [Dang et al., 2020] and graph-based rea-
soning frameworks [She et al., 2024] to improve spatial sen-
sitivity and structural modeling. In parallel, more general-
ized manipulation localization methods [Ma er al., 2023; Zhu
et al., 2025] capable of handling Deepfakes alongside other
image manipulation types have also been explored. Besides,
unified frameworks [Zhang et al., 2024a; Miao et al., 2024;
Miao et al., 2023a; Zhang er al., 2024b] that tackle Deepfake
detection and localization jointly have also been proposed.

Despite the swift progress, most existing methods over-
look the small and sparse nature of facial forgeries, and
they depend on pre-processing steps like face detection and
cropping, limiting their localization performance in high-
resolution images, especially in challenging real-world sce-
narios involving facial components or multiple face manipu-
lations.
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Figure 1: The overview of our proposed framework. It performs
Deepfake detection and localization in an end-to-end manner. A
shared backbone is used to extract feature maps F. For localiza-
tion, per-pixel embeddings P are generated from pixel decoder, and
learnable queries Q are used to decode localization predictions.

3 Method

The overall framework of our proposed method is illustrated
in Figure 1. We adopt an end-to-end architecture that jointly
performs image-level Deepfake detection and fine-grained
Deepfake localization. The model takes the entire image
as input, potentially containing one or multiple faces. The
shared backbone extracts feature maps, which are then used
to predict classification scores as well as localization masks
indicating forgery regions. This method enables efficient im-
age processing without extra pre-processing steps like face
detection and cropping, thereby simplifying the pipeline for
unified Deepfake detection and localization.

3.1 Backbone

Deepfake detection and localization require a large receptive
field to capture global manipulation cues, as well as fine-
grained representations for precise localization of manipu-
lated regions. To this end, we adopt Swin Transformer [Liu
et al., 2021] as the shared backbone for both tasks, which
leverages shifted window attention to efficiently model long-
range pixel-wise interactions. Given an image with resolu-
tion H x W as input, the backbone generates the feature map
F € RCr X%X%, where CF is the channel and S is down-
sampling ratio.

3.2 Masked Deepfake Localization

Deepfake localization is challenging due to facial manipu-
lation pixels are sparse relative to background regions, and
a single image may contain both full-face swaps and fa-
cial component manipulation. To address this, we adopt
Mask2Former [Cheng et al., 2022], introducing learnable
queries and utilizing a masked transformer decoder to effi-
ciently locate manipulated regions.



Pixel Decoder. We follow Mask2Former and use a pixel de-
coder to upsample feature maps from backbone, obtaining a
set of high-resolution per-pixel embeddings P € RE*H*W
In this process, deformable attention layers are employed to
fuse information across feature maps.

Masked-Attention Transformer Decoder. The Trans-
former decoder introduces a set of learnable queries Q €
RN € to decode per-pixel embeddings into localization pre-
dictions. Specifically, it consists of L Transformer layers.
Each layer performs cross-attention with per-pixel embed-
dings P to iteratively update the learnable queries and refine
the localization mask prediction.

To enhance the decoder’s focus on small and sparse manip-
ulated regions, we utilize masked cross-attention [Cheng et
al., 2022], allowing each query to focus selectively on rele-
vant regions. This process is formulated as:

Q = softmax (Q K/ + M)V, + Q. 1)

Here, Q and Q denote the input and updated learnable
queries, respectively. Q; at [-th layer is projected from Q,
while K; and V| are obtained from per-pixel embeddings P.
The attention mask M at position (i, j) is derived from the
previous layer’s mask prediction M;_; € [0, 1]V *HW:

0, it M;_1(4,5) > 0.5,
otherwise.

2

M) ={%
Localization Loss. Each learnable query is then decoded
through linear layers to predict a pixel-wise localization mask
and a foreground confidence score. The localization loss is
defined as:

»Cloc = Emask + £C187 (3)

where L,k combines pixel-wise binary cross-entropy and
Dice losses for localization mask, while L is a binary cross-
entropy loss for confidence score predictions, as described in
[Cheng et al., 2022].

3.3 Deepfake Detection

To identify whether the entire image is real or fake, we di-
rectly feed the backbone feature map F into a lightweight
linear layer. A binary cross-entropy loss for detection is com-
puted as:

Liet = Loce(y, ) 4
where y € {0, 1} is the ground truth label, and § is the pre-
dicted probability.

Note that the detection and localization branches are struc-
turally independent, enabling efficient processing for either
task individually or both jointly.

3.4 Optimization
The overall framework is end-to-end optimized by:
L= >\det . Edet + >\loc : Elom (5)

where A\ge; and \j,. denote the loss weights for Deepfake
detection and localization, respectively. We adopt A\ger = 0.1
and \;,. = 1 to achieve balanced convergence for both tasks.

3.5 Ensemble

Ensembling is a common strategy in deep learning to com-
bine predictions from multiple models, aiming to improve
overall performance. We adopt this approach to fuse the out-
puts of two models with different backbones.

The ensemble prediction Y is calculated as follows:

w1 - Y1+ w2 Y2

e —— (6)
w1 + wa

where y; and ys denote the outputs of the two models from

either Deepfake detection or localization. The fusion weights

wy and wq are used to balance the contributions of the two
models.

Y =

4 Experiments

4.1 Experiment Setup

Dataset. We conduct experiments on the Deepfake Detec-
tion and Localization image dataset (DDL-I) [Miao et al.,
2025], which was originally released from the IJCAI 2025
Challenge “The Deepfake Detection and Localization”. The
DDL-I dataset is a large-scale Deepfake benchmark com-
prising 1.2 million images with pixel-level annotations. The
dataset includes both genuine and manipulated facial images,
and each fake image is paired with pixel-level mask anno-
tations that indicate the manipulated regions. The DDL-I
dataset includes 61 representative Deepfake methods across
four major forgery types: face swapping, face reenactment,
full-face synthesis, and face editing. In addition, it encom-
passes both single-face and multi-face scenarios, simulating
complex Deepfake content and contexts in real-world appli-
cations. Compared to existing datasets, DDL-I dataset pro-
vides superior diversity in forgery types, larger scale, and
more complex scenarios, making it particularly suitable for
both image-level Deepfake detection and fine-grained local-
ization tasks. Following the original dataset splits, we use
around 950k images for training, 240k for validation, and
220k for testing.

Evaluation Metrics. The performances of Deepfake detec-
tion and localization tasks are evaluated with different met-
rics.
Deepfake Detection. The detection task is evaluated using the
standard AUC (Area Under the ROC Curve) metric for binary
classification.
Deepfake Localization. The localization task is evaluated
with two pixel-level metrics: F1-score and IoU (Intersection
over Union).

The F1-score is calculated by:

2 Precision - Recall

Fl = 7

Precision + Recall )

Precision = L Recall = L (8)
TP+ FP’ TP+ FN’

where TP, F'P, and F'N denote true positive, false positive,
and false negative pixels, respectively.
The IoU measures the overlap between the predicted and
ground-truth forgery regions:
Area of Intersection TP

ToU = -
° Area of Union TP FPiFN O




Table 1: Comparison results of Deepfake detection and localization
on the DDL-I validation set. Bold indicates the best results.

Detection  Localization

Method
AUC Fl1 ToU
HRNet-w18 [Wang er al., 2020] 99.47 95.17 90.77
UperNet-Swin-T [Xiao et al., 2018] 99.85 96.53 93.28
SegFormer-B5 [Xie er al., 2021] 99.92 96.78 93.75
SAM [Kirillov et al., 2023] 99.51 93.70 88.14
IML-ViT [Ma et al., 2023] - 94.10 90.20
Mesorch [Zhu et al., 2025] - 94.41 90.40
Ours 98.38 97.90 95.88

Implementation Details. The proposed solution is imple-
mented using the MMSegmentation framework [Contribu-
tors, 2020]. We adopt the Swin-T backbone as a typical im-
plementation of our framework. The backbone is initialized
with pre-trained weights on ImageNet-1k [Russakovsky et
al., 2015]. Following [Cheng et al., 2022], the number of lay-
ers L in the Transformer decoder is set to 9, and the number
of learnable queries [V is set to 100. For data preprocessing,
each image is resized to a base scale of 2048 x 512 while pre-
serving its original aspect ratio. For data augmentation, we
first use random resizing with a scale factor of [0.5, 2.0], and
then use random cropping and padding to get training images
with size 512 x 512. We also apply random flipping and typ-
ical photometric distortions, such as random brightness and
contrast.

The proposed solution is trained end-to-end using anno-
tations for both Deepfake detection and localization. Train-
ing is conducted on two NVIDIA Tesla A100 GPUs with a
mini-batch size of 64. We use the AdamW optimizer with a
learning rate of 0.0001, weight decay of 0.05, and a polyno-
mial learning rate decay schedule for 30k iterations. Unless
specialized otherwise, all compared methods adopt the same
preprocessing and training settings.

4.2 Comparison to State-of-the-art Methods

We evaluate the proposed solution with Swin-T on the DDL-
I validation set for both Deepfake detection and localization
tasks, as presented in Table 1. We compare our approach
with state-of-the-art semantic segmentation methods, includ-
ing HRNet [Wang et al., 20201, UperNet [Xiao et al., 2018],
SegFormer [Xie ef al., 20211, and SAM [Kirillov et al., 2023].
To enable joint prediction of both tasks, we integrate an addi-
tional detection branch for these methods. We also include
recent methods specifically designed for image manipula-
tion localization, including IML-ViT [Ma et al., 2023] and
Mesorch [Zhu et al., 2025]. For the Deepfake detection task,
our method achieves a competitive AUC of 98.38%, com-
parable to existing methods. For Deepfake localization, our
model obtains an F1 score of 97.90% and an IoU of 95.88%,
surpassing state-of-the-art methods by a large margin. These
results indicate that our approach can effectively achieve both
accurate image-level Deepfake detection, as well as fine-
grained localization of forgery regions.

Table 2: Ablation results of backbone selection and ensemble strate-
gies on the DDL-I testing set.

Detection  Localization

Method
AUC F1 TIoU

Single backbone
ResNet-50 88.32 72.76  66.58
Swin-T 93.42 77.78  71.79
Swin-S 94.24 76.18 70.79
Ensemble (Swin-T + Swin-S)
Average 94.01 77.07 71.44
Re-weighted 94.95 - -
Ours 94.95 7778  71.79

4.3 Ablation Study

We conducted ablation studies to investigate the impact of
backbone selection and ensemble strategies in our frame-
work. Results on DDL-I testing set are shown in Table 2.

WEe first compare three single backbones: ResNet-50 [He et
al.,2016], Swin-T, and Swin-S [Liu et al., 2021]. Among sin-
gle backbones, Swin Transformer variants consistently out-
perform ResNet, indicating the effectiveness of shifted win-
dow attention in capturing global and local forgery cues.
Notably, Swin-T achieves better localization performance
(71.79% 1oU), while Swin-S yields stronger detection ac-
curacy (94.24% AUC). This is likely due to Swin-T, with a
smaller receptive field, can provide finer-grained representa-
tion for Deepfake localization, while Swin-S, with a larger
capacity, is more suitable for global Deepfake detection.

We further investigate two ensemble strategies based on
Swin-T and Swin-S: vanilla averaging and re-weighted fu-
sion. The simple averaging with equal ensemble weights per-
forms even worse than using a single model. Then, we stud-
ied to use a re-weighted fusion strategy for Deepfake detec-
tion by assigning a higher weight (w = 2.5) to Swin-S model.
This improves Deepfake detection AUC to 94.95%.

Our final solution (row 6) adopts this re-weighted strat-
egy for detection and uses Swin-T for localization predic-
tion. This combination achieves a promising overall perfor-
mance: 94.95% AUC, 77.78% F1, and 71.79% loU. By aver-
aging these metrics, our solution achieved an overall score of
81.50% on the DDL-I testing set, securing a leading position
in the IJCAI 2025 Challenge “The Deepfake Detection and
Localization”. These results show the effectiveness of Swin
Transformer and our tailored ensemble strategy in addressing
key challenges in Deepfake detection and localization.

4.4 Visualization

We further visualize the results of our method on the Deep-
fake localization task. Here, we take the model with the Swin-
T backbone as an example. The visualization results of the
DDL-I validation set are illustrated in Figure 2. It covers
three typical types of forgery scenarios: full-face forgeries
(a), manipulations of specific facial components (b—c), and
complex scenes involving multiple real and fake faces (d—e).
The visualization results show that our method can accurately
localize forgery regions under these cases, and the predicted
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Figure 2: Visualization results of our method for Deepfake localization on DDL-I validation set. Our method consistently achieves accurate
localization across diverse forgery cases, including full-face forgeries (a), manipulations of specific facial components (b—c), and complex

scenes containing both real and fake faces (d—e).

masks are very close to the ground truth, indicating strong
robustness and practical potential in real-world applications.

5 Conclusion

In this paper, we presented a unified framework for joint
Deepfake detection and localization. Our solution utilizes a
shared Swin Transformer backbone for feature extraction and
integrates a masked-attention Transformer decoder for pre-
cise pixel-level Deepfake localization. The framework oper-
ates in an end-to-end manner without pre-processing steps,
ensuring flexibility and simplicity. Extensive experiments on
the DDL-I challenge benchmark demonstrate the effective-
ness of our method, providing a practical solution for real-
world application scenarios. In future work, we will explore
the underlying relationship between Deepfake detection and
localization tasks to enhance overall performance.
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